
Bruno Xavier et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 3), September 2014, pp.115-122

 www.ijera.com 115 | P a g e

Agile Data: Automating database refactorings

Bruno Xavier*, Guilherme Lacerda*, Vinicius Ribeiro*
+
, Emerson Ribeiro*,

André da Silveira*, Sidnei Silveira**, Jorge Zabadal***, Fábio Gonçalves ****
*(Department of Computer Science, UniRitter, rua Orfanotrófio, 555, Porto Alegre, CEP 90.840-000 - RS –

BRAZIL)

** (Department of Information Systems, UFSM Frederico Westphalen. Linha 7 de Setembro, s/n - BR 386 Km

40 – CEP 98400-000 - Frederico Westphalen – RS - BRAZIL)

*** (Department of Mechanical Engineering, Federal University of Rio Grande do Sul – UFRGS – Rua

Sarmento Leite , 425, - CEP 90.050-170 - Porto Alegre – RS – BRAZIL)

**** (Department of Design, Federal University of Rio Grande do Sul – UFRGS Avenida Osvaldo Aranha, 99 -

6º andar- sala 607 - CEP 90035-190 - Porto Alegre, RS - , BRAZIL)
+
 (Department of International Relations, ESPM, R. Guilherme Schell, 350 – CEP 90640-040, Porto Alegre,

RS, BRASIL)

ABSTRACT
This paper discusses an automated approach to database change management throughout the companies’

development workflow. By using automated tools, companies can avoid common issues related to manual

database deployments. This work was motivated by analyzing usual problems within organizations, mostly

originated from manual interventions that may result in systems disruptions and production incidents. In

addition to practices of continuous integration and continuous delivery, the current paper describes a case study

in which a suggested pipeline is implemented in order to reduce the deployment times and decrease incidents

due to ineffective data controlling.

Keywords – Information Systems Design; Agile Methods, Automating Processes; Refactoring

I. INTRODUCTION
In system development processes, controlling

and updating data across the delivery workflow are

critical for the wealth of projects. In software

organizations, the isolation of database activities and

the lack of automation processes that involve data are

quite common. Simple yet manual jobs that demand

DBAs’ and/or Operations teams’ intervention may

generate bottlenecks to the process. Both Sadalage

[7] and Humble and Farley [6] strongly recommend

the use of continuous integration for database

management so that teams cannot only integrate code

but also data. To adapt database control to a new

model is not an easy job, since unlike code, data is

greatly increased during the product life cycle and,

therefore, changes and migration tasks must be

carefully carried out. According to Humble and

Farley [6], as a system evolves, changes are

inevitable, thus, mechanisms that allow the smooth

execution of such modifications in favor of process

reliability are necessary.

In order to speed up the development process, this

paper intends to introduce agile concepts relevant to

data management into the environments that

compound the delivery pipeline. This work does not

aim to teach the usage of the mentioned tools, but to

offer an adaptive model to distinct realities. With the

support of such resources, it is possible to manage

data along with continuous integration practices by

treating data as code through version control and

automated deployments.

The paper is structured as follows: the first chapters

introduce concepts as guidelines to be used in the

evolution process of development. Ideas of database

refactoring and data management in continuous

delivery are described, since such notions underlie

the approach further presented in the case study.

Furthermore, problems related to the lack of

integration processes and how their effects can be

harmful to team productivity are explored. Finally,

the article outlines a case study in a real organization,

in which an automated procedure is applied to

improve data management along with software

delivery. The benefits of this method are shown

through metrics collected before and after its

implementation, which served as the basis for a

discussion of the observed results.

II. CONTINUOUS INTEGRATION
Continuous Integration (C.I) was primarily

described by Beck and Andres [3] and vastly

mentioned by Fowler and Foemmel [5] as an

effective way to speed up the delivery process,

minimizing software errors. Under the hood, C.I aims

to keep products functional in a constant manner by

frequently committing code to a baseline, whereby it

is integrated and tested. According to Humble and

RESEARCH ARTICLE OPEN ACCESS

Bruno Xavier et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 3), September 2014, pp.115-122

 www.ijera.com 116 | P a g e

Farley [6], without continuous integration, software

is broken until someone proves it works, either in test

or integration stages. This practice helps to reduce the

impact caused by small modifications, once many

developers can share the same project. To accomplish

that, version control and automated build tools are

necessary. Figure 1, depicted by Ashley [2], shows a

diagram of a classic continuous integration

environment.

Fig. 1 Continuous Integration Setup (Ashley 2011)

As Ashley [2] illustrates, an integration environment

works very similarly to an individual box, except for

its version control and visibility to team members,

since a trigger is launched every time code is

committed to the baseline, as described below:

• The project repository is cloned from the

version control system;

• The deployment is done along with unit

tests;

• In case of success of previous steps, an

incremental tag is created on the version control as a

build number

• In case of failure, the execution is marked as

an error and the server notifies the stakeholders.

III. DATABASE REFACTORING

Fowler and Beck [4] defines refactoring as

refining code without changing either behavior or

logic. To Ambler [1], database refactoring represents

small schema modifications in order to improve its

design. Although it seems to be a simple task, data

modifications can be complex and take a certain

time; hence, discipline and control are keywords.

According to Ambler [1], in opposite to code

refactoring, which concerns only with behavioral

semantics preservation, database refactoring tends to

be more complex, since it must deal with information

semantics besides behavior. In other words, the

occasional change on a column value must not affect

the final user. For instance, the value, which

represents a certain telephone number, either

commercial or personal, could be improved to be, in

addition to a new personal telephone column, just

commercial. This change implies code modifications

to handle behavioral semantics and database

migration scripts to keep information semantics.

Ambler [1] yet enumerates five categories of

database refactoring, the last three as subcategories of

structural refactoring:

Quality: This category focus on data quality. For

instance, a restriction applied to an attribute in order

to avoid null values.

Structural: Represents the schema modifications such

as attribute name changes, attribute removal, table

splitting and so forth.

Architectural: A kind of structural refactoring, albeit

closer to the application. It assumes changes in the

database encapsulation, for example, a view created

over two tables or a procedure with business logic

migrated from the database to the application.

Performance: One of the most recurring tasks among

operation DBAs, it includes activities as index inserts

in favor of performance.

Referential Integrity: Corresponds to schema

modifications with regard to integrity on tables

relations – example: cascading deletion.

In present, automation tools such as dbdeploy and

liquibase have support to the foregoing categories of

database refactoring, along with rollback mechanisms

to most of them. To model such tasks, collaboration

between DBAs and developers is important, due to

the need of specialists’ visions of both database and

applications coupling.

IV. DATA MANAGEMENT WITH CONTINUOUS

DELIVERY

According to Humble and Farley [6], continuous

delivery is a way of absorbing the business needs

without environment disruptions. In fact, the data

management differs from other parts of the system,

since unlike other aspects of the software, once in

production; a product increases its data and adds

value. Therefore, in most cases, this data cannot be

reconstructed on every release, but can be migrated in

a reliable way to ensure the information consistency.

As said by Humble and Farley [6], continuous

delivery demands that each approved release can be

deployed in production, which implies in the

preservation of data state. To achieve that, Sadalage

[7] suggests database continuous integration along

with code as a flexible method to handle the control

of data in the product life cycle.

In favor of that, version control and automated builds

are critical to refactoring management. A technique

first described by Schuh [8] and, today, used as

Bruno Xavier et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 3), September 2014, pp.115-122

 www.ijera.com 117 | P a g e

foundation to automated tools, presents a partitioning

of database changes in cohesive scripts, each of

which representing an operation. These operations

are defined as change logs and stand for the

variations since the last release. The change logs are

segmented for the sake of traceability. Listing 1

represents a small DBDeploy script.

Listing 1. DBDeploy Changelog Example
CREATE TABLE cliente {

ID BIGINT GENERATED BY DEFAULT AS

IDENTITY (START WITH 1)

PRIMARY KEY,

primeiro_nome VARCHAR (255),

segundo_nome VARCHAR(255)

);

--//@ UNDO

DROP TABLE IF EXISTS cliente;

--//

very script must use a name pattern for the execution

sequence and change tracking.

Ambler [1] discusses three nomenclature strategies;

in addition, Sadalage [7] includes the release method,

which appends the release number along with the

scripts.

For example, release-1.0.1.sql, release-1.1.2.sql and

so forth. Sadalage’s [7] method is effective with

small changes, even though the tracking down for

modifications done between releases could be

missed. All the others are described below:

• BuildNumber: Requires the creation of a

new script on every build even without changes.

Although it is a good practice either it comes to

modifications recovery of specific builds, in case of

small changes or frequent builds, it could be an

overkill due to the amount of artifacts.

• TimeStamp: With the approach of

timestamp, the scripts are named and consolidated

based on the date in which the modifications were

done (e.g., 20120212.sql, 200120215.sql). Such

technique may implies issues with concurrency, since

two people can commit on the same day, generating

version control conflicts.

• UniqueIdentifier: This strategy offers a

sequential nomenclature for scripts.

Likewise the software build number, generated

through a continuous integration system, the

sequence of script numbers dictates the build number

of modifications in database (e.g., 001-Client.sql,

002-Account.sql, 003-AccountType.sql). It is

important, still, that a link exists between the

application build number and the data scripts.

Automation tools implement the above-mentioned

strategies with the support of checksum tables so that

tracking down changes can be idempotent, hence, the

same operation will just be applied once.

V. METHOD

In favor of delivery process optimization and to

minimize operation incidents, the aforementioned

techniques were implemented as an approach to

address the control of data modifications within a

software company. In spite of well scoped

environments and a controlled software pipeline, the

release process constantly presented flaws caused by

an inefficient management over database changes.

The deployment was manual and strongly dependent

on a well-written documentation, which, in general,

was not the case. In addition, consistency problems

brought by the isolation of database deployment

processes were common during the delivery stages.

To manage this implementation, the collaboration

between the development and operations teams was

necessary in order to establish a reliable flow for the

ongoing projects.

Table 1 shows metrics collected from the production

environment, in the period of 5 months, before the

improvement plan. The table depicts the average

deployment times and the incident numbers related to

databases.

Table 1. Deployments X Incidents

 Jan Jul Aug Sep Oct

Deployments 10 6 10 13 8

Average

Time of

Deployment

(min)

40 35 30 35 40

Incidents 6 3 6 5 4

At the company, the delivery flow is composed of

four environments with the following scopes:

• Integration: Intends to promote continuous

integration among teams with regular commitments

and unit tests.

• Quality: Environment used for acceptance

tests.

• Staging: Similar to production, it is

responsible for integration around systems and

concerns user acceptance tests.

• Production: The last environment in the

process, which is made available to the clients.

The project builds were all handled by Jenkins with

Maven , whereas the version control was done

through Git . Additionally, the build artifacts were

stored inside Apache Archiva. For the project

purpose, the Liquibase tool was included within the

stack. Supporting more than 30 operations, Liquibase

Bruno Xavier et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 3), September 2014, pp.115-122

 www.ijera.com 118 | P a g e

is focused on database refactoring and used for data

migration tasks.

V.I CHANGE LOGS DESIGN

The development teams were instructed to write

a single change log on every release. It is built

manually and retains the differential code from the

last version. Once done, the change log is committed

to the version control and added to the previous

scripts. As for the tracking, the change logs are

appended to the current release version. To illustrate,

the following tree depicts the base structure of a

generic project:

project

pom.xml

project-db

src

main

assembly

liquibase.xml

changelog

data

1http://jenkins-ci.org

2http://maven.apache.org

3git-scm.com

4apache.archiva.org

5http://www.liquibase.org

1.0.0.xml

1.1.0.xml schema

1.0.0.xml

master.xml

project-ear

project-ejb

project-web

The execution is controlled by a master descriptor

(master.xml), which handles the sequential execution

of the scripts, as shown in listing 2.

Listing 2. Main Descriptor
<?xml version="1.0" encoding="UTF-8"?>

<databaseChangeLog

xmlns="http://www.liquibase.org/xml/ns/

dbchangelog"xmlns:xsi="http://www.w3.org/200

1/XMLSchemainstance"

xmlns:ext="http://www.liquibase.org/xml/ns/

dbchangelog-ext"

xsi:schemaLocation="http://www.liquibase.org

/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/

dbchangelog/dbchangelog-2.0.xsd

http://www.liquibase.org/xml/

ns/dbchangelog ext

http://www.liquibase.org/xml/ns/

dbchangelog/dbchangelog-ext.xsd">

<include

file="src/main/database/changelog/data/1.0.0

.xml" />

<include

file="src/main/database/changelog/data/1.0.1

.xml" />

<include

file="src/main/database/changelog/schema/1.0

.0.xml"

/>

</databaseChangeLog>

While the data folder stores the data insertion scripts,

the schema directory retains the structural scripts.

The Assembly directory keeps the achievement

descriptor used by Maven during the release stage,

whereby the change logs are deployed to Archiva to

be further executed against the staging and

production environments.

Following the Liquibase definitions, each change log

is grouped by a sequence of change sets, representing

individual operations as exemplified in listing 3.

Listing 3. Changeset sample
<databaseChangeLog

xmlns="http://www.liquibase.org/xml/ns/dbcha

ngelog"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://www.liquibase.org

/xml/ns/

dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/

dbchangelog

-2.0.xsd">

<changeSet id="1" author="silva"

context="integration, qa,

staging, production">

<createTable tableName="cliente">

<column name="id" type="int">

<constraints primaryKey="true"

nullable="false"/

>

</column>

<column name="name" type="varchar(50)">

<constraints nullable="false"/>

</column>

</createTable>

</changeSet>

</databaseChangeLog>

It is important observe that the context property, in

some cases, because of environment peculiarities, can

be used to link some operations to the right

environments. This property is further set inline on

Jenkins.

To identify the already executed change sets,

Liquibase itself generates checksums to every

operation and, along with the author, date and

identifier attributes, stores it in a table called

DATABASECHANGELOG. This table is checked

before each execution to ensure that only the new

change sets will be applied against the database.

However, the tool provides mechanisms to treat

executions within other use cases, as the recurrent

execution of the same change set.

Bruno Xavier et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 3), September 2014, pp.115-122

 www.ijera.com 119 | P a g e

V.II DEPLOY STAGES

The development pipeline was preserved in the

integration and quality environments. On each build,

the scripts are cloned from Git and ran against the

databases. On the other hand, to ensure the final

environments reliability, the artefacts are released

before the distribution to staging. Therefore, the same

scripts package is deployed to production.

The release, staging and production phases run based

on the success of previous tasks. Henceforth, the

triggers become manual, carried out by the quality

team as soon as the version is approved. Figure 2

illustrates the job sequence on Jenkins.

Fig. 2 Build pipeline

V.II.I DATABASE ACCESS
In order to automate the data migration tasks, the

Liquibase Maven plugin must be configured as

follows:

Listing 4. Liquibase Plugin
<?xml version="1.0"?>

<plugin>

<groupId>org.liquibase</groupId>

<artifactId>liquibase-maven-

plugin</artifactId>

<version>2.0.1</version>

<dependencies>

<dependency>

<groupId>com.microsoft.sqlserver</groupId>

<artifactId>sqljdbc4</artifactId>

<version>4.0</version>

</dependency>

</dependencies>

<configuration>

<driver>com.microsoft.sqlserver.jdbc.SQLServ

erDriver</driver>

<changeLogFile>src/main/database/changelog/m

aster.xml</changeLogFile>

<url>jdbc:sqlserver://${database.host}:${dat

abase.port};

DatabaseName=${database.name}</url>

<username>${database.username}</username>

<password>${database.password}</password>

<promptOnNonLocalDatabase>false</promptOnNon

LocalDatabase>

</configuration>

</plugin>

Regarding security, the credentials are stored as

properties inside individual environment profiles

along with the database address and port.

Nevertheless, since the database name is a common

property, it can be included on the project main

descriptor.

Listing 5 demonstrates a suggested profile

configuration.

Listing 5. Environment Profiles
<?xml version="1.0"?>

<profile>

<id>production</id>

<properties>

<database.host>10.2.20.1</database.host>

<database.port>1040</database.port>

<database.username>project</database.usernam

e>

<database.password>drowssap</database.passwo

rd>

</properties>

</profile>

V.II.II REMOTE REPOSITORY

To store change logs, a repository was created in

Archiva. This space is used throughout the release

and deployment tasks in the staging and production

environments. The Maven configuration is presented

below.

Listing 6. Remote Repository Configuration
<distributionManagement>

<repository>

<id>release.repo</id>

<name>Release Repository</name>

<url>http://archiva.compania.com/archiva/rep

ository/release.

repo/</url>

</repository>

<snapshotRepository>

<id>archiva.snapshots</id>

<name>Internal Snapshot Repository</name>

<url>http://archiva.compania.com/archiva/rep

ository/

snapshots/</url>

</snapshotRepository>

</distributionManagement>

V.II.III INTEGRATION AND TESTS
The integration and quality deployment tasks

share a common profile, configured inside the data

sub module Maven descriptor. The profile performs

the scripts execution by running the Liquibase update

goal during the process-resources phase of Maven, as

exemplified in listing 7.

Listing 7. Update Profile
<?xml version="1.0"?>

<profile>

<id>update-db</id>

<build>

<plugins>

<plugin>

<groupId>org.liquibase</groupId>

<artifactId>liquibase-maven-

plugin</artifactId>

<version>2.0.1</version>

<executions>

<execution>

<phase>process-resources</phase>

<goals>

<goal>update</goal>

</goals>

</execution>

</executions>

</plugin>

</plugins>

Bruno Xavier et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 3), September 2014, pp.115-122

 www.ijera.com 120 | P a g e

</build>

</profile>

All profiles aforementioned, as well as the context

and Maven phases, are configured as parameters on

Jenkins inline configuration:

-Pintegration -Pupdate-db -

Dliquibase.contexts=integration process-

resources

V.II.IV RELEASING

The release stage uses the Maven Release plugin,

which increments the descriptors to the next

development version and archives the scripts. This

step depends on two attributes set on Jenkins:

• releaseVersion: Identification for Archiva

artifacts and tags on version control.

• developmentVersion: Represents the next

release to be worked by development team. The value

is updated during the release stage as mentioned

before.

The release step is linked to a profile (archive-db),

which controls the scripts distribution.

The archiving is configured inside the data sub

module and calls the Assembly plugin that comprises

the information needed to the package creation.

Listings 8 and 9 show the Release Plugin

configuration and the archive-db profile respectively.

Listing 8. Release Plugin Configuration
<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-release-

plugin</artifactId>

<version>2.2.2</version>

<configuration>

<tagNameFormat>@{version}</tagNameFormat>

<scmCommentPrefix>Project -

</scmCommentPrefix>

<tag>${env.releaseVersion}</tag>

<releaseVersion>${env.releaseVersion}</relea

seVersion>

<developmentVersion>${env.developmentVersion

}</

developmentVersion>

<checkModificationExcludes>

<checkModificationExclude>build-number.txt</

checkModificationExclude>

</checkModificationExcludes>

<arguments>-Parchive-db</arguments>

</configuration>

</plugin>

Listing 9. Assembly Plugin Configuration
<profile>

<id>archive-db</id>

<build>

<plugins>

<plugin>

<artifactId>maven-assembly-

plugin</artifactId>

<configuration>

<descriptors>

<descriptor>src/main/assembly/liquibase.xml<

/

descriptor>

</descriptors>

</configuration>

<executions>

<execution>

<id>archive</id>

<phase>package</phase>

<goals>

<goal>single</goal>

</goals>

</execution>

</executions>

</plugin>

</plugins>

</build>

</profile>

The assembly descriptor contains the compression

format together with the change logs location, as

exemplified in listing 10.

Listing 10. Assembly Descriptor
<assembly>

<id>liquibase</id>

<formats>

<format>zip</format>

</formats>

<includeBaseDirectory>false</includeBaseDire

ctory>

<fileSets>

<fileSet>

<useDefaultExcludes>true</useDefaultExcludes

>

<directory>src/main/changelog/</directory>

</fileSet>

<fileSet>

<useDefaultExcludes>true</useDefaultExcludes

>

<directory>src/main/changelog/</directory>

<includes>

<include>liquibase.xml</include>

</includes>

</fileSet>

</fileSets>

</assembly>

V.II.IV STAGING AND PRODUCTION
With the scripts stored into the repository, the

subsequent tasks of staging and production can be

executed. A generic project to such job is created on

Git, whereby another Maven descriptor is used to

download and run the scripts. This project has two

stages: first, download and decompression and,

second, the scripts execution is performed by

Liquibase plugin as described in listing 11:

Listing 11. Generic project descriptor
<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-dependency-

plugin</artifactId>

<configuration>

<artifactItems>

<artifactItem>

<groupId>${env.groupId}</groupId>

Bruno Xavier et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 3), September 2014, pp.115-122

 www.ijera.com 121 | P a g e

<artifactId>${env.artifactId}</artifactId>

<version>${env.version}</version>

<type>zip</type>

<outputDirectory>${project.build.testOutputD

irectory}<

/outputDirectory>

</artifactItem>

</artifactItems>

</configuration>

<executions>

<execution>

<phase>validate</phase>

<goals>

<goal>unpack</goal>

</goals>

</execution>

</executions>

</plugin>

<plugin>

<groupId>org.liquibase</groupId>

<artifactId>liquibase-maven-

plugin</artifactId>

<version>2.0.1</version>

<dependencies>

<dependency>

<groupId>com.microsoft.sqlserver</groupId>

<artifactId>sqljdbc4</artifactId>

<version>4.0</version>

</dependency>

</dependencies>

<configuration>

<driver>com.microsoft.sqlserver.jdbc.SQLServ

erDriver</driver>

<changeLogFile>src/main/database/changelog/m

aster.xml</changeLogFile>

<url>jdbc:sqlserver://${database.host}:${dat

abase.port};

DatabaseName=${database.name}</url>

<username>${database.username}</username>

<password>${database.password}</password>

<promptOnNonLocalDatabase>false</promptOnNon

LocalDatabase>

</configuration>

<executions>

<execution>

<phase>integration-test</phase>

<goals>

<goal>update</goal>

</goals>

</execution>

</executions>

</plugin>

</plugins>

As for the remote repository, its information is

inserted as a mirror into Maven settings, as in listing

12.

Listing 12. Release repository
<mirror>

<id>release.repo</id>

<url>http://archiva.company.com/archiva/repo

sitory/release.repo

/</url>

<mirrorOf>*</mirrorOf>

</mirror>

As seen in listing 11, the tasks created on Jenkins

require four attributes although only the version

number is inserted manually on every release. The

parameters are described below:

• groupId: Project group identifier;

• artifactId: Artifact identifier;

• version: Artifact version to be deployed;

• databaseName: Database name where

change logs will be executed on.

In addition, the command line below, appended to the

task, calls the environment profile and the

integration-tests phase, chosen for the Liquibase

update as mentioned before:

- Production integration-tests

VI. RESULTS
Past six months, there was a significant

improvement to the collected metrics within the

production environment. Two of them were

considered to evaluate the efficiency of the applied

practices. Figure 3 corresponds to the average time

on the scripts execution since the project started, as

follows:

Fig. 3 Deployment Execution Time

By using the first release as an example, a manually

executed project with approximately 100 scripts used

to take between forty minutes and one hour to be

finished.

Today, just five minutes are necessary to run and

validate the same amount of data inside change logs.

Figure 4 shows the incidents generated within the

same period. Notably, the incidents owed to manual

deployments, which were one of the biggest

problems faced by the company, drastically

decreased from an average of 10 to 2.

Bruno Xavier et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 3), September 2014, pp.115-122

 www.ijera.com 122 | P a g e

Fig. 4 Deployment Incidents

VII. CONCLUSION
At the project conclusion, it can be said that the

biggest constraint still is to deal with changes

resistance. It is hard to change individual mindsets as

well as organizational cultures. However, despite the

necessary efforts to implement the process, the

results were significantly positive and the initiative

achieved its goal.

With continuous improvement in mind, further

projects for the pipeline optimization could be

implemented, such as the release step, which still

implies some manual intervention. Such task could

be fully automated with incremental version numbers

for the tracking, not forgetting to mention that code

builds should follow the same practice.

In addition, although the work did not introduce

automated tests, those could be easily inserted along

with the migration tasks.

ACKNOWLEDGEMENTS
Authors Lacerda and Ribeiro would like to thank

UniRitter for financial support.

REFERENCES

[1] S. Ambler, Agile database techniques:

effective strategies for the agile software

developer. New York, John Wiley & Sons,

2003.

[2] N. Ashley, Taking control of your database

development. Available in

http://dbdeploy.com/wpcontent/uploads/2007/

05/taking-control-of-your-database-

development.pdf.

[3] K. Beck and C. Andres, Extreme programming

explained: embrace change. Boston, Addison-

Wesley Professional, 2004.

[4] M. Fowler and K. Beck, Refactoring:

improving the design of existing code. Boston,

Addison-Wesley Professional, 1999.

[5] M. Fowler and M. Foemmel, Continuous

integration. Available in http://www.

thoughtworks. com/Continuous Integration.

pdf.

[6] J. Humble and D. Farley, Continuous Delivery.

Boston, Addison-Wesley, 2010.

[7] P. Sadalage, Recipes for Continuous Database

Integration. Boston, Addison-Wesley, 2007.

[8] P. Schuh, Integrating agile development in the

real world. Stamford, Cengage Learning,

2005.

